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The magnetic properties of the one-dimensional Hubbard model with a hard- 
core interaction on a ring (periodic boundary conditions) are investigated. At 
finite temperatures it is shown to behave up to exponentially small corrections 
as a pure paramagnet. An explicit expression for the ground-state degeneracies 
is derived. The eigenstates of this model are used to perform a perturbational 
treatment for large but finite interactions. In first order in U ~ an effective 
Hamiltonian for the one-dimensional Hubbard model is derived, it is the 
Hamiltonian of the one-dimensional Heisenberg model with antiferromagnetic 
couplings between nearest neighbor spins. An asymptotic expansion for the 
ground-state energy is given. The results are valid for arbitrary densities of 
electrons. 
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1. I N T R O D U C T I O N  

F r o m  the theoret ica l  po in t  of  view one-d imens iona l  models  are  often 
fascinating,  since in many  cases it is poss ible  to ob ta in  exact  results. This  
is also true for the H u b b a r d  model ,  t~) It describes i t inerant  e lectrons on a 
la t t ice with an  on-si te  interact ion.  Whereas  not  too  much is known  a b o u t  
the proper t ies  of  the H u b b a r d  model  in more  than  one d imension,  it is 

so lvable  in one d imens ion  using the Bethe Ansatz.  This was shown by Lieb 
and  Wu,  t2) who der ived the so-called nested Bethe Ansatz  equat igns.  
Unfor tuna te ly  it is difficult to solve these equat ions.  Lieb and W u  ob ta ined  
the g round  s tate  in the t he rmodynamic  l imit  for a half-filled band  and  the 
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excitations may be classified in this case as well (see ref. 3 and the 
references therein). Irrespective of the density of the electrons, the theorem 
of Lieb and Mattis ~4~ tells us that the ground state is a singlet. This result 
was recently extended to finite temperatures by Aizenman and Lieb ~5~ in 
the sense that the magnetization is always less than the pure paramagnetic 
value. Further, Shiba ~6J and Carmelo and Baeriswy1171 used the thermo- 
dynamic limit of the nested Bethe Ansatz equations to obtain expansions 
for several quantities in the limit of strong interaction. These results are 
valid for all densities and we will come back to them later. 

In the special case of a hard-core interaction the theorem of Lieb and 
Mattis is not valid. Instead, Aizenman and Lieb ~5~ showed that in the case 
of a ring (periodic boundary conditions) and for an odd number of 
particles there is one among the degenerate ground states for which the 
total spin takes the maximal value. For all finite temperatures the 
magnetization exceeds the pure paramagnetic value. There is a tendency 
toward a ferromagnetic behavior. In contrast, one may show that for a 
chain with open ends all the spin configurations are degenerate and the 
system is paramagnetic. ~5~ This means that the tendency toward a 
ferromagnetic behavior for the system with periodic boundary conditions 
must be weak, since a change of the boundary conditions should not 
produce a large effect. 

In Section 2 we discuss the symmetries of a model of itinerant one- 
dimensional electrons on a lattice with a hard-core repulsion (e.g., the 
one-dimensional Hubbard model) in some detail and we show that the 
partition function factorizes up to exponentially small corrections into 
an electronic part and a magnetic part. The latter is that of a pure 
paramagnet. This result is used to show that the difference of the 
magnetization from the paramagnetic value is exponentially small, 
depending on the number of electrons. IX(N) will be called exponentially 
small if and only if ~ > 0 exists such that X(N) exp(fN) tends to 0 in the 
limit where N tends to infinity.] In Section 3 we construct the eigenstates 
of the one-dimensional Hubbard model with hard-core interactions and 
we discuss the electronic properties of the system. We give an explicit 
expression for the degeneracies of the ground states in the subspaces where 
the z component of the total spin of the system is fixed. Further~ we 
calculate the thermodynamic potentials in the thermodynamic limit. The 
free energy density is given by a sum of the free energy density of spinless 
fermions and that of a paramagnet. The eigenstates are used in Section 4 to 
derive an effective Hamiltonian for the one-dimensional Hubbard model 
in the limit of strong interaction. The effective Hamiltonian is the 
Hamiltonian of the Heisenberg model with antiferromagnetic couplings. 
This result yields an expansion for the ground-state energy of the one- 
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dimensional Hubbard model which differs from the one given in refs. 6 
and 7. Our result is obtained by an ordinary perturbational treatment. 
The radius of convergence of the perturbational series tends to 0 in the 
thermodynamic limit and therefore our expansion of the ground-state 
energy is only asymptotically true. Unfortunately, nothing is known about 
the convergence of the series expansion for the ground-state energy given 
in ref. 7 and the difference remains as an open problem. In the same way 
as for the Hubbard model, an effective Hamiltonian for the one-dimen- 
sional t J-model ~8'91 in the small-J limit may be obtained. 

2. H A R D - C O R E  I N T E R A C T I O N S ,  M A G N E T I C  P R O P E R T I E S  

The Hamiltonian of the one-dimensional (extended) Hubbard model 
is given by 

H=-~ , t x (a+~+,~ax~+ax+ax+,~)+U~nx+nx_  +V({nx})  (2.1) 
x ,  o" x 

+ ax~ (ax,) are the creation (annihilation) operators for electrons with spin a 
+ on the site x and nx~=ax~a .... n ~ = n , + + n  x . They obey the usual 

anticommutation relations for fermions. The model describes electrons on 
a one-dimensional lattice with an on-site interaction and a hopping 
between nearest neighbor sites. U is a positive real number, tx are non- 
vanishing real numbers. V({n~})is a finite potential that depends on the 
occupation numbers only. It may be, for example, a long-range interaction 
or a single-particle potential of the form ~ vxn ~ with finite real numbers v,. 
In the usual Hubbard model one has V= 0 and t ,  = t > O. In the following 
L denotes the number of sites, N the number of electrons. We will restrict 
ourselves to the case N ~< L. In the case of a chain with open ends, the sum 
in (2.1) goes from 1 to L - 1 ;  in the case of periodic boundary conditions 
the sites are taken to be integers modulo L, so that the sum goes from 1 
to L and x + L = x. The Hamiltonian conserves the number of electrons 
with spin + ( - ), which we denote by N+ (N _ ). In the case of a hard-core 
interaction (U = ~ )  the Hamiltonian takes the form 

H o = P o [ - ~  t~(a++,~ax~+a.:~ax+,~)+ V({nx})]Po (2.2) 

where Po is the projector onto the states with no doubly occupied sites, 

Po = l-I (1 -nx+n~_  ) (2.3) 
x 
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In this and in the following section we discuss the properties of the 
Hamiltonian (2.2). We introduce the operators 

S,,,,=(2N)-' ~ ~ exp[2n/j(a- ~ n y ) / N ]  
x = l  j = l  y = l  

where 

zx,,,, a= l,..., N 

(2.4) 

+ + 
Zx.o = nx = ax+ ax+ + ax_ ax 

_ + + a +_ ax+ "~x, !  - -  a x +  a x  

, + rx .2=-t (a~+ax - a  + a~+) 

_ a  § 

(2.5) 

In the subspace of no doubly occupied sites and for fixed a, the operators 
Sa, o, S.,l ,  S,,,2, and S,,,3 generate a u(2) algebra, i.e., P(~[S~,o, S~,,] Po = O, 
i=  1, 2, 3, and PoS~,,Sa, jPo=iPoS.,kPo/2, where (i, j, k) is a cyclic per- 
mutation of (1, 2, 3). In the subspace of no doubly occupied sites the ath 
electron is defined by counting up the electrons from the site x = 1. Here 
S.=(S~,~, S~,2, S~,3) represents the spin operators of the ath electron. 
They do not change the occupation numbers n~ and therefore they com- 
mute with V({n~}) and with Po. Further, one obtains the commutation 
relations 

I S  .... P o ~  + + ] (ax+ l,,ax,, + ax,,ax+ l~)Po = 0, 
t7 

1 <~x<L (2.6) 
and 

so,.eo E (a oaL.o + a oa,  )Po 

=Po~(a~,~aL,~)PoS~+,,n+Po~(a~,~a, .~)PoSa_~. ,  (2.7) 
r r 

If we take an open chain with Dirichlet boundary conditions, (2.6) shows 
that the Harniltonian (2.2) commutes with the operators Sa,~. The 
Hamiltonian is invariant under the transformations generated by the 
algebra [u(2)] N. As a consequence, all spin configurations are degenerate 
and the system behaves as a pure paramagnet. In the case of periodic 
boundary conditions this is not longer true. Because of (2.7), the 
Hamiltonian (2.2) commutes only with the operators of a subalgebra of 
[u(2)] u, namely with the operators that do not change under cyclic 
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permutations of the particles. We will call this subalgebra ([u(2)]N)c. 
The components Sx, Sy, and Sz of the total spin 

S x = Z  Sa,1 = Z,x, ,  (2.8a) 
a X 

Sy = Z Sa,2 = Z Tx, 2 (2.8b) 
a x 

Sz = Z Sa.3 = Z zx.3 (2.8c) 
a X 

of the system are elements of that algebra. 
In the following we will discuss a system with periodic boundary 

conditions. A further symmetry operator of the Hamiltonian (2.2) is the 
operator that performs the cyclic permutation of the spins. It may be 
written as 

C= Z Z ax+~ua~+,,t'"aL,u_,a~N,~u'"ax,,,l (2.9) 
o ' 1 . . , o  N x i <  . . ,  < ~ x  N 

Since cN = 1, C has the eigenvalues Cr = exp(2zir/N), r = 1 ..... N. It com- 
mutes with St, Sy, and Sz so that the eigenvalues of S z, St, and C may 
be used to classify the eigenstates of the Hamiltonian (2.2). C commutes 
with the elements of the symmetry group generated by the algebra 
([u(2)]u),.. Therefore we may characterize a spin configuration of an 
eigenstate of Ho by its eigenvalue of C. All spin configurations with the 
same eigenvalue c~ are degenerate. Let f(N/d, N_/d) be the number of spin 
configurations with a given value of S~ = m = N/2-  N_ that are invariant 
under cyclic permutations C N/d but not under C N/dp with a p such that 
dp[N (dp divides N). One has 

f (N/d ,N /d)=(NN ) (2.10) 
dlN, N~ 

which is the number of spin configurations for fixed m. From (2.10) one 
obtains 

f(N,N )= ~ #(d)(N/d) (2.11) 
diN, N \ N  /d] 

where #(d) is the M6bius function. (2.11 ) follows using formulation of the 
M6bius inversion formula for functions of more than one integer (see 
Appendix A). Some obvious properties of f(N, N_ ) are 

f ( N , N  ) = f ( N , N - N  ) 

f(U, N) =f(N, O) = 6N., 

NIf(N, N ) 

(2.12a) 

(2.12b) 

(2.12c) 
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To obtain a spin configuration for a given r and S. = rn one has to take a 
linear combination of N/d configurations that are invariant under C N/'t, 
where d is a divisor of r, N, and N . The number of spin configuration for 
fixed r and S: = m is therefore given by 

dN .... = ~ (d /N) f (N /d ,  N /d) (2.13) 
d l r ,  N , N  

Some properties of dN ... .  are 

du ....  ~" du, ~, _ m (2.14a) 

du, I,m ~ du ....  <~ du,o,m (2.14b) 

(2.14a) follows from (2.12a). The first equality in (2.14b) holds if and only 
if r, N, and N are relative prime. The second equality in (2.14b) holds if 
and only if r is a multiple of the greatest common divisor of N and N 
Summing over r in (2.13), one obtains 

N , N ' ( A,/ e t 

r = O  r = O  d l N ,  N e l N / d , N  Id, r 

= U (a/N) ie/a) 
r = O  e I N ,  N d , r  

{ U / e ~  
= Z \N /e) Zl~(d) 

e l N .  N d]e  

(2) (2.15 

as it should be. The last step follows from (A.8). 
The partition function is defined as 

Z(fl, h) = Tr[exp( - f lHo  + flhS:)] (2.16) 

where fl = (kB T) -  1 is the inverse temperature and h is a uniform magnetic 
field in the z direction. Let E ,  be the eigenvalues of Ho. The number of 
eigenstates of H o with the eigenvalues E ,  in the subspace of states with 
eigenvalue c, of C and eigenvalue m of S~ may be written as #n, rdN .. . .  with 
an integer #.,r >~ 0. The partition function takes the form 

Z( f ,  h) = ~ #,,rd u ....  e x p ( - B E  n + fhm)  (2.17) 
n , r , m  

We introduce 

Zo(f ,  h) = ~ #,,~ e x p ( - f i E , )  2U[cosh(fh/Z)]U/N (2.18) 
n,r  
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which will be used as an estimate for Z(fl, h). To obtain an upper bound 
for the partition function, we use the second relation (2.14b), 

du, r,m <~ dN, O,m 

( N/e ~ (d/N)It(e/d) E ~ \N /eJ e[N ,N  

= 2 ( N/e ~ qS(e)/N (2.19) 
eIN, N _  \ N  _/eJ 

~b(n) is the Euler totient function that is defined as the number of positive 
integers not exceeding and relative prime to n (see, e.g., ref. 10, p. 826). An 
upper bound for the partition function is now given by 

. . . .  N_  dIN,  N -  \N- /d/ I t" ' rexp[- f lE"+flh(N/2-N-)] /N 

= 2  2 2 q~(d)  It , ,rexp[-flE,+flhd(N/2d-N_)]/N 
n,r d i N  N = 0  N 

(2.20) 
This result leads finally to 

Z(fl, h ) <~ Z,,(fl, h) {1 + 2 q~(d)[2 cosh(flhd/2 ) ]U/d[2 cosh(flh/2 ) ] u} 
d~-I 

din (2.21) 

The equality in (2.20) and (2.21) holds if and only if N = 1. 
A lower bound for the partition function may be obtained from 

(2.14b) as well. We have 

du .... >1 ds, 1,m = f(N, N )/N (2.22) 

Using (2.17), one may perform the same manipulations as in (2.20) to 
obtain 

z(fl, h)>l 2 Y, 2 It(d) 
n,r d i n  N _ = O  

which may be written in the form 

z(t , h) 
( 

Itn.r exp[ - f iE,  + flhd(N/2d- N_ ) ]/N 

(2.23) 

+ 2 It(d)[2 cosh(flhd/2)] U/d[2 cosh(flh/2)]-u} 
dl N 

d> I (2.24) 
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The equality in (2.23) and (2.24) holds if and only if N =  i. These results 
may be formulated as follows. 

Theorem 1. The partition function of the (extended) Hubbard 
model (2.2) with a hard-core repulsion and N > 1 obeys the relations 

Zo(fl, h) Y<(flh) < Z(fl, h)< Zo( fl, h) Y> (flh) (2.25) 

with 

Y>(x)= 1 + ~ q~(d)[2 cosh(xd/2)]N/a[2 cosh(x/2)] N 
d > l  
d i n  

(2.26a) 

and 

Y<(x)= 1 + ~, p(d)[2 cosh(xd/2)]N/d[2 cosh(x/2)] N (126b) 
d >  N 
d i n  

Remarks. (i) For fixed x, Y > ( x ) - I  and I - Y < ( x )  become 
exponentially small in the limit of large N. This shows that up to 
exponentially small corrections the partition function of the one-dimen- 
sional Hubbard model with hard-core interactions factorizes and the 
magnetic part is that of a pure paramagnet. The factorization becomes 
exact in the thermodynamic limit, where the upper and the lower bounds 
tend to the same value. 

(ii) In the case V= 0, tx = t > 0 the thermodynamic potentials may 
be calculated in the thermodynamic limit using the explicit form of the 
eigenenergies of the Hamiltonian. This is done in the following section. 

(iii) The bounds in Theorem 1 cannot be used as good estimates in 
the limit where flh tends to infinity and N is fixed. In this limit Y<(flh)=0 
and Y>(flh)= N. The reason is that no assumption about the eigenvalues 
E, of the Hamiltonian was made. 

From now on we let N >  1. In the same way as (2.26) was obtained, 
one may derive bounds for the derivatives of Z(fl, h). One has 

_1, d k 
fl ~-~Z(fl, h)= ~, 11n. rdN ... .  m~exp(--f lE~+flhm) (2.27) 

n,r,m 
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Since mZt>~ O, we may calculate the upper and lower bounds for the right- 
hand side of (2.27) for k = 2 / in  the same way as we have calculated the 
upper and lower bounds for the partition function. One obtains 

fl 21 d21 < B-21 d21 
-a-~, Z ( fl, h ) . -a-~, ( Z o ( fl, h ) r > ( fih ) ) 

f l -  2t dt d2t 
- ~ t  Z(fl, h) > f1- 2,_~ ( Zo(fl, h) Y< (flh ) ) 

If k in (2.27) is odd, one may use 

j~--21 1 d2l+ 1 
dh21+ 1 Z(fl, h) 

= ~ - 2 ' - ~ , z ( ~ ,  h ) -  

(2.28a) 

(2.28b) 

~ #n,r du . . . .  m -~-- m exp( -- PEn + ~hm) 
t t ,  r ,  m 

to calculate upper and lower bounds in this case. Since m21(N/2-m)>~O, 
the derivation is the same as before. One obtains finally 

d2 l~  I 

fl 2l ' dh21~ I Z(fl, h) 

d21 + 1 

<fl  2 ' - ' a  h2,+, (Zo(fl, h) Y<(flh)) 

t2. Oat + /~ a-~ 

d21+ 1 
- - 2 1 - -  1 dh 21+ I Z([3, h) 

d21+ l 
> fl-21-, dh 21+' (Zo(fl, h) Y>(~h)) 

+ fl 2 ' - ) - ~ Z o ( K h ) ( Y < ( B h ) -  Y>(Bh)) 

The magnetization is given by 

g ( ~ , h ) = B  ' d ~ l n  Z(fi, h) (2.31) 

(2.30b) 

(2.29) 
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and the expectation value of S 2 of the system without a magnetic field may 
be calculated as 

-2 d2 h) J,=o ( S2)(K O)= 3Ez(~, o) ] -' ~ - ~  z(B, (2.32) 

One has the following result. 

Corollary 1. The difference of the magnetization from the 
paramagnetic value for a model described by the Hamiitonian (2.2) is 
exponentially small. The magnetization obeys the relations 

M(fl, h)<Mo(fl, h)+(N/2)EY>(flh)/Y~(flh)-]]+ Y'(flh) (2.33a) 

M(fl, h)>M,,(fl, h)+(N/2)EY._(flh)/Y.(flh)-1]+ Y'.(flh) (2.33b) 

where 

Mo(fl, h)= fl '(d/dh)In Z,,(fl, h) = N tanhlflh/2)/2 (2.34) 

is the paramagnetic value. 
This follows from (2.31) and from the bounds on the partition 

function (2.25) and its first derivative [i.e., (2.30) for 1= 0]. But, as in the 
case of Theorem 1, this result gives no estimate for the magnetization in 
the limit where flh tends to infinity and N is fixed. For zero temperature, 
the magnetization is given by the maximal value S~ in the subspace 
of the ground states. It is shown below that for the Hubbard model (i.e., 
V=0,  t x = t > 0 ) ,  h > 0 ,  and T = 0  we have M = N / 2  if N is odd and 
M = N/2 - 1 if N is even, whereas the pure paramagnetic value is given by 
Mo = N/2 in this case. 

As was mentioned in the introduction, the second theorem of 
Aizenman and Lien  s) shows that the magnetization of systems described 
by (2.2) with an odd number of particles exceeds the paramagnetic value. 
This result follows from a certain "clique structure" of the partition 
function. That structure may be obtained within our formulation as well. 
Inserting (2.11), (2.13) into (2.17), one obtains 

Z(fl, h)= Y' De(fl)[2 cosh(Be/2)] N/" (2.35) 
elN 

where 

De(fl) = ~ P,.r exp(--fiE,) ~ d#(e/d)/N (2.36) 
n , r  d l e ,  r 
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Aizenman and Lieb showed that D~(fl)> 0 if N is odd and t x > 0. In this 
case M(fl, h)> Mo([3, h) follows easily. On the other hand, if N is even, 
D~([3) might be negative for some e and it is not possible to obtain a bound 
for M(fl, h) using (2.35), (2.36). 

In a similar way, using (2.28) in the case where l =  1, we obtain the 
following result. 

Corollary2. The expectation value of S 2 differs from the 
paramagnetic value by exponentially small corrections. It obeys the 
relations 

( S  2 )([3, O) < 3N/4 + [ Y< (0)] - '  Y~ (0) (2.37a) 

($2)(~ ,  O) > 3N/4 + [ Y>(0)] ~ Y<(0) (2.37b) 

The value 3N/4 is again the paramagnetic value, which may be obtained by 
replacing Z with Zo in (2.32). 

3. HARD-CORE INTERACTIONS, ELECTRONIC PROPERTIES 

From now on we discuss the properties of the usual Hubbard model, 
i.e., V is set to 0 in (2.1) and (2.2) and tx= t > 0  independent ofx.  Results 
for t < 0 may be obtained in a similar manner. 

The Hamiltonian of the one-dimensional Hubbard model us usually 
diagonalized using the Bethe Ansatz. The case of hard-core interactions is 
much simpler than the case of finite U. The normalized eigenstates of H 0 
may be written in the form 

pr; k~ . . .  k N ;  f f l  " '" a N >  

N 
= L N/2 ~ (-- )t'nU2 N t I~l ~, exp(2rarj/N) 

P j = l  

• ~, e x p ( i ~ x , k e , ) a  + + x,~,~,'"axNo,,NI0) (3.1) 
X I < X 2 " <  . . .  < X N 

Here the first sum runs over all N! permutations, and n ~  is the smallest 
number of cyclic permutations that leave the spin configuration invariant. 
It is clear that n{, l lN.  The spin indices are understood modulo N, i.e., 
a~ = aj+ N. Because of the periodic boundary conditions, the wavenumbers 
k~ must satisfy the condition 

exp(ik~L + 27tir/N) = 1 (3.2) 



520 Mieike 

The energy of the state (3.1) is given by 

E( {ka } ) = - 2 t  E cos k,  (3.3) 
a 

and the eigenvalue of this state with respect to C is cr = exp(2~ir/N). One 
cannot choose r arbitrarily, it has to satisfy the condition (N/nl, I)Ir. In the 
case N_ = N  or N =0,  for example, n{~ I = 1 and only the value r = 0  is 
possible. In this case the sum over j in (3.1) is a sum over equal contribu- 
tions and the states (3.1) are Slater determinants of single-particle states 
with momenta ko. It should be mentioned that the states (3.1) form a 
complete orthonormal set of states without doubly occupied sites. 

The form (3.1) of the eigenstates is similar to the usual Bethe Ansatz. 
The electronic part of the wave function is the same; the spin part of (3.1) 
is constructed using the symmetry described in Section 2. It should be 
mentioned that these states are eigenstates of S~ but not of S 2. A similar 
structure for the eigenstates of Ho was used by Doucot and Wen, " ~  using 
the language of first quantization. 

The ground state is obtained by the symmetric distribution of the 
wave numbers around 0, i.e., 

{kj} = { - T z ( N -  I)/L,..., rr(N- 1)/L} (3.4) 

The ground state is a state with r = 0 for N odd and r = N/2 for N even. 
The ground-state degeneracy is thus completely determined by the 
symmetry described in Section 2. From (2.11), (2.13), and (2.19), we obtain 
the following result. 

C o r o l l a r y  3. If N < L  the ground-state degeneracy for fixed 
Sz = N / 2  - N _  is given by 

d(O) = dN, o,N/2 = E ( N/e ~ ~(e)/N (3.5a) 
u_ -N_  elU.u_\N-/e] 

if N is odd, and 

d(O) = E E (d/N) #(e/d) ( N/e ~ (3.5b) 
N - = d N ' N / 2 " N / 2 - - N -  elN, N-  die, N~2 \ N  /e.] 

if N is even. 

R e m a r k .  In the case where N is odd, the maximal value of Sz is N/2, 
whereas it is N/2 - 1 if N is even. This result follows since dN, O,N/2 -----  I if N 
is odd and dN, N/2,N/2 = 0 if N is even, but dN, N/2, N/2 - - - -  1 if N is even. 
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Only in the case of a half-filled band, i.e., for N =  L, does one obtain 
a different result. In this case the ground-state energy given by (3.3) is zero 
and does not depend on r. In fact, all the spin configurations are 
degenerate in this case. Further, (3.4) shows that the ground state has zero 
momentum. 

It should be mentioned that the energy differences of the states with 
lowest energy for a different r are of the order r2/N2L and are therefore 
much smaller than the energy difference of the two lowest lying eigenvalues 
for the same r, which is of the order 1/L. 

The expression (3.3) for the energy of the eigenstates may be used to 
calculate the thermodynamic potentials in the thermodynamic limit. The 
partition function Zo(fl, h), which was introduced in (2.18), may be written 
a s  

Zo(fl, h) = N-~[2  cosh(flh/2 ) ] u ~ Z ~.r/N(fl ) (3.6) 
r 

where 

Zu, u(fl) = ~ exp{2flt~cos[2zt(na--u)/L]} (3.7) 
O ~ < n l <  " "  < n N < L  a 

We introduce 

r.(l~, z) = E zNZN, u(~) (3.8) 
N 

which may be written as 

Y.([I ,z)=l-I( l  +zexp{2f l tcos[2rc(n-u) /L]})  (3.9) 
n 

In the thermodynamic limit we define 

p(fl, z )=f l  -' lim L ' In Y.(fl, z) (3.10) 

Yu(fl, z) may be interpreted as the grand canonical partition function of a 
system of noninteracting one-dimensional spinless fermions with single- 
particle energies - 2 t  cos[2n(n - u)/L], n = 1,..., L. The function p(fl, z) is 
the pressure. It may be written in the form 

p(fl, z)=f1-1 dxln( l  +zexp{2f l tcosd[2rc(x-u)]})  (3.11) 

and does not depend on u. The reason is that, as mentioned above, the 
energies for different r become degenerate in the thermodynamic limit. The 
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free energy density is related to the pressure by a Legendre transformation 
in the chemical potential # = f l - ~  In(z) to its conjugate variable c, the 
concentration of the electrons. It turns out that the free energy density of 
the one-dimensional Hubbard model with hard-core interaction is in the 
thermodynamic limit given by the sum of the free energy densities of a 
system of noninteracting spinless fermions and a systems of noninteracting 
spins, such that the densities of the spins and of the spinless fermions are 
the same. 

4. THE CASE OF LARGE U 

The case of large but finite U may be treated perturbatively with the 
hopping term of the Hamiltonian (2.1) as the perturbation. The part of H 
that is proportional to U has the eigenvalues nU, n >10, with the eigen- 
projectors P,,. The P,, project onto the subspaces with n doubly occupied 
sites. Since the eigenvalues nU are highly degenerate, one has to perform 
a degenerate perturbation expansion. To first order one has to diagonalize 
H0 given in (2.2). Because of the symmetry described in Section 2~ the 
eigenstates (3.1) are highly degenerate. This degeneracy may be lifted at 
least partially by the second order of the perturbational calculation. To 
second order one has to calculate the matrix elements of (see, e.g., ref. 12~ 

Po H'Po = -Po  HSo HPo (4.1 ) 

where So is the reduced resolvent 

So= ~ (Un) ' P. (4.2) 
/1~'0 

Since PoHP,, = 0 for n > 1, H '  may easily be calculated and one obtains 

n ' =  t4; +/4;  

H~ = -2( t2/U)  ~ n.~nx + j 
x 

+(t2/U) ~ (a+~+l~ax+~,ax~ax_l~,+h.c.) (4.3) 
X ,  ~ ,  o "  

H;=z(t2/ tY) a ,  +, + laa r,,axaa~ + la' 
x .  a ,  r ' 

- ( t 2 / u )  Ia+ +   nxax_ + h.c./ 
x,~r 

h.c. denotes the Hermitian conjugate of the preceding term. The de- 
composition of H '  was chosen such that PoH~Po is invariant under the 
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symmetries generated by ([u(2)]N)~. If for some reason the second parts of 
H~ and H~ are neglected, Ho + H '  is the Hamiltonian of the tJ model. (s'9) 
The matrix elements of H '  between two degenerate eigenstates of H o may 
be calculated without difficulties. The details are given in Appendix B. The 
result is 

(r ;  k I ' - "  ku; a ' l - ' -  tr~v] H '  [r; k i ' "  kN; al " "  0 " N ~  

= - 2(t2/U)(n {~ } n {,~'} ) ~/2N- 2 ~ ~ exp [ 2~zir(j - j ' ) / N ]  I~ 
j , j '  a 

x (,~,,, . 6,r -6o;-~o ,,,+.+,6~.;,+o+, ,,,~o) i ' t a , ~ l + a  1 ' 4 a f l , ~ r J + u + J  ' ~ " , 

x [-I[ 6,,~.+o,.~,j~, (4.4) 
a ' ~ a . a + l  

where the coefficient I ,  is given by 

z ox.Iiz ] 
P P '  X l <  . . .  < X N  fl 

• [1 -cos(keo+keo+t)]  6xo+l . . . .  ~ (4.5) 

We may replace the sum over x~ < - . .  <XN in (4.5) by a sum over 
x 2 < - . "  < x u < x j + L .  Then one may introduce y,, ~=%,, a = 2  ..... N, 
YN = X~ + L as new summation variables. After an obvious change in the 
summation over P and P' one obtains the same expression as in (4.5), but 
with a replaced by a -  1. This shows that I,, does not depend on a, I,, = L 
Summing (4.5) over a and diving by N, we obtain 

I = L  NN , ~ ( _ ) e  ~ ( _ ) , , ,  ~ e x p [ i ~ x , , ( k e , _ k p ; , ) ]  
tl, tt '  P P '  x I  < ' ' '  < .~'N fl  L _I 

x [1 - c o s ( k p , + k p , ) ] f x o +  j,~, 

: L - N N - '  Z Z ( - ) P  ~ e x p [ i ~ x / , ( k / , _ k e t ~ ) ]  
a , a '  P x l , . . . , x  N [J L .J  

• [ 1 - cos(ko + ka,)] 6x, + ~, x,, (4.6) 

The sum over xj ..... xu  is easily performed and one obtains 

I = L -  IN-  1 ~ (cos ka - cos ka,) 2 
a , a  I 

The matrix elements (4.4) may finally be written as 

(4t2/U) < r, a'l . . . a'u] Horflr, tr l . "  aN)  

(4.7) 

(4.8) 

822/62/3-4-2  
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where 

and 

H ~ =  I ~  (S." Sa+, - 1/4) (4.9) 
a 

Ir, trl . . . aN)  _,1/2 Ar-l ~ exp(2rcirj/N)lai + .aj+jv) (4.10) - - , .{ , r}~,  . .~'" 

J 

Up to a constant - !N/4 ,  Hen is the Hamiltonian of the one-dimensional 
antiferromagnetic Heisenberg model with periodic boundary conditions. 
The matrix elements of Herr are taken between two eigenstates of the 
operator that performs a cyclic permutation of the spins. This operator 
commutes with H~fr. In order to obtain the eigenstates of the Hubbard 
model up to second order in the perturbational treatment, we have to 
diagonalize the Hamiltonian of the Heisenberg model with N spins. The 
ground state is an eigenstate of S 2 with the eigenvalue s(s + 1 ), where s = 0 
if N is even or s = �89 if N is odd. This is in agreement with the theorem of 
Lieb and Mattis. ~4~ 

It should be mentioned that the result (4.8), (4.9) was derived for a 
finite system and that it may give the wrong ground-state energy in the 
thermodynamic limit. Since the energy gap between the ground states for 
different r is O(N-3),  the convergence radius for the perturbational series 
is O ( N  - 4 )  and tends to zero in the thermodynamic limit. In the 
thermodynamic limit the lowest energies in the different subspaces where r 
is fixed become degenerate and it is not sufficient to calculate the matrix 
elements of H '  between the degenerate eigenstates of Ho for fixed r. 
Nevertheless, the thermodynamic limit of I may easily be calculated and 
one obtains 

I=  c{ 1 + sin( 2nc )/2nc - [ sin( nc )/nc ] ~ } (4.11 ) 

where c is the electron density in the thermodynamic limit. Using that the 
ground-state energy per particle of the Heisenberg model is in the 
thermodynamic limit given by 1 / 4 - / I n  2, we obtain the ground-state 
energy per site of the Hubbard model 

E = - 2 t  sin(nc)/n - 4  In 2(t2/U) ci (4.12) 

This does not coincide with the result of Shiba t6~ (see also ref. 7) 

E =  - 2 t  sin(nc)/n - 4 In 2(t2/U) c2[1 - sin(2nc)/2~c] (4.13) 

Equation (4.13) follows if one takes the thermodynamic limit of the nested 
Bethe Ansatz equations obtained by Lieb and Wu and expands in powers 
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of (l/U). This means that the thermodynamic limit is taken first, whereas 
our result is obtained by first expanding and then taking the 
thermodynamic limit. As was argued above, our result can be only 
asymptotically true in the thermodynamic limit. Unfortunately, nothing is 
known about the convergence of the 1/U expansion that yields (4.13). (7~ 
We may remark that (4.12) gives a lower value for the ground-state energy 
than (4.13) if and only if c is smaller than Co, which is the solution of the 
equation tan(gco)= 2gco. One has Co ~ 0.371. For small c the second term 
in (4.12) is of the order c 2, whereas the second term in (4.13) is of the 
order c 4. For c = 1, (4.12) and (4.13) coincide. 

A similar calculation may be performed for the one-dimensional 
t J-model. (8'9) The kinetic energy of this model, i.e., the part of the 
Hamiltonian that is proportional to t, is given by (2.2). A perturbational 
treatment of the term that is proportional to J is therefore completely 
analogous to the calculations above. The only difference is that 4t2/U is 
replaced by J and some of the terms in H '  are neglected in the t J-model, 
namely the second terms in the expressions for H~ and Hi  in (3.7). The 
result for the t J-model is 

where 

and 

J(r, a'l "" a'N[ H,j, cfrlr, al . .-aN) (4.14) 

His, err= i,s ~ (S~' S~+, - 1/4) (4.15) 
a 

I , j = L - ' N - I ~  [ 1 - c o s ( k a - k , , ) ]  (4.16) 
(/, a '  

In the thermodynamic limit one obtains 

l , s=  c{1 - [sin(nc)/nc] 2 } (4.17) 

Putting e = 1 - 3, it may be seen that Itj differs from I in the order 6. Such 
a result was expected, since the two parts of H '  that are neglected in the 
t J-model are of the order 6J 8'9) 

A P P E N D I X  A 

The M6bius function #(d) defined as (see, e.g., ref. 10, p. 826) 

/.t(d)= 1 if d =  1 

= ( - 1 )k if d is a product of k distinct primes 

= 0 if d is divisible by a square > 1 
obeys the following proposition. 

(A.I) 
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Proposition (M6bius Inversion Formula). Let f(n) and g(n) 
be complex-valued arithmetic functions of a natural number. Then 

if and only if 

f ( n )  = ~, g(d) (A.2) 
d [ n  

g(n) = ~, #(d) f ( n /d )  (A.3) 
d l  n 

This is equivalent to the following proposition. 

Proposition. Let f ( n l  ..... n,,) and g(n~ ..... nm) be complex-valued 
arithmetic functions of m natural numbers. Then 

if and only if 

. f (n ,  ..... n,,,) = Y" g(n, /d , . . . ,n , , /d)  (A.4) 
d l n l , . . . , n m  

g(n~ ..... n,,,)= ~ # ( d ) f ( n ] / d  ..... n,,/d) (A.5) 
d I n l ,..., tlm 

Proof. Let n be the largest common divisor of n~ ..... n,, and let 
ni = nm,, i = i ..... m. Then (A.4) reads 

f ( m l n  ..... m, ,n)  = ~ g(m]n/d ..... m,n/d)  
dl~a 

= ~_, g ( m l d  ..... mr, d) 
d i n  

(A.6) 

and (A.5) reads 

g(mln  ..... m , n ) =  y' #(d) f ( rn ln /d  , .... m,,n/d) 
d i n  

(A.7) 

The equivalence of (A.6) and (A.7) is a simple consequence of the 
equivalence of (A.2) and (A.3). This proves the equivalence of (A.4) and 
(A.5). On the other hand, the equivalence of (A.2) and (A.3) follows from 
the equivalence of (A.4) and (A.5). This shows that the second proposition 
is equivalent to the M6bius inversion formula. 

The M6bius function obeys 

#(d) = 5,., (A.8) 
d i n  

which follows, for instance, from (A.2), (A.3) with f ( n ) =  1 and g(n)= ~,,,i, 
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A P P E N D I X  B 

We calculate the matrix elements of H '  in (4.3) between different 
degenerate eigenstates of Ho. For the first term in H~ we obtain 

<r, kl . . . kN ,  a'~ . . . a ~ l ~  n~nx + , Ir, k, " ' k N ,  r " "fiN> 
x 

= L "(nl~)ni~.))'/2N 2 ~ ( _ ) , . ~ ,  ( _ ) e '  ~ e xp[2r t i r ( j - j ' ) /N]  
p p '  j , j '  

x ~ < ~ N ( ~ 6 x . + l  . . . .  ,)exp[i~x.(keo-kp;,)]~,6~,+o,~,+., 
X I < " "  . ~ a 

(B.1) 

Due to the last factor, one gets a contribution only if the two spin 
configurations are the same. The second term in H'~ may be calculated 
from 

(r, kj kg,  alaN[ ~', ++ + �9 .. , , ax laaxa.axaax l tr '  

x ,  cT, tr '  

+ h.c. lr, kl . . .kN, al . . . a u )  

= L-N(n~)n~,~')) raN-2  2 ( - - )?  ~ ( _ )e' ~ exp[2rc i r ( j - j ' ) /N]  
p p '  ],j' 

x ~. exp[ i~xw(k , , , , - ke . , ]Z6~+, , , ,  ...... 
X l <  - < x  N ~ t / '  

x 2 cos(ke,, + ke,,, ,1 1-I ~ j ,  ,,...;,,,,. (B.2) 
r 

As in (B.1), one gets a contribution only if the two spin configurations are 
the same. This is due to the fact that H~ has the same symmetry as Ho. The 
situation is different for H6. For the first term in H6 one obtains 

(r, kl �9 �9 �9 kN, al' �9 "'a'ul ~. ax++ l~ax.,ax~ax++ ~, tr, kj �9 �9 �9 kN, a l . . . a u >  
x ,  ~ ,  tr '  

= L-n(nl~ ) n{~,})Z/2N -z ~ ( _ ) e  ~. ( _ )? '  ~ exp[27c i r ( j - j ' ) /N]  
p p '  j , j '  

X ~, e x p [ i ~ x ~ . ( k e , - k F < ) ] ~ . + l  l . . . .  
_41 < . - .  < X N L a"  

a ' v a a ,  a +  l 

(B.3) 
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Finally, the second term of H ;  may be written as 

(r ,  k l . . .  kN,  tr ' l"" a'NI ~ a+~+ l~nxax_ i~ + h.c. [r, k l . . .  kN,  o 1 " "  a N )  
x , t ~  

= L - N(n I o I n {o'~ )1/2 N - 2  ~. ( _ )e ~, ( _ ) e' ~ exp [27cir(j-- j ' ) / N ]  
P P' i,.J' 

E x 
X l  < " " " < X N  L a ' ! ~ a 

x 6~,+=+,. -j,+aJ~j+o,-j,+~+, l--I J'j+a',~'+a' (B.4) 
a '  ~ a , a +  1 

Up to prefactors, we have calculated all the contributions to the matrix 
elements of  H ' .  The matrix elements of  H '  are now given by (4.4). If one 
takes the t J-model,  only the (B.I) and (B.3) must  be taken into account  
and one finds (4.15). 

A C K N O W L E D G M E N T S  

It is a pleasure to thank Herv~ Kunz and AndrOs Silt6 for many 
valuable and informative discussions on the Hubbard  model. 

R E F E R E N C E S  

1. J. Hubbard, Proc. R. Soc. Lond. A 276:238 (1963); 277:237 (1964). 
2. E. H. Lieb and F. Y. Wu, Phys. Rev. Left. 20:1445 (1968). 
3. A. Kliimper, A. Schadschneider, and J. Zittartz, Z. Phys. B 78:99 (1990). 
4. E. H. Lieb and D. C. Mattis, Phys. Rev. B 125:164 (1962). 
5. M. Aizenman and E. H. Lieb, Phys. Rev. Lett. 65:1470 (1990). 
6. H. Shiba, Phys. Rev. B 6:930 (1972). 
7. J. Carmelo and D. Baeriswyl, Phys. Rev. B 37:7541 (1988). 
8. P. W. Anderson, in Frontiers and Borderlines in Many Particle Physics (International 

School of Physics "Enrico Fermi," Course CIV), R.A. Broglia and J. R. Sehriefer, eds. 
(North-Holland, Amsterdam, 1988). 

9. F. C. Zhang and T. M. Rice, Phys. Rev. B 37:3759 (1988). 
10. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, 

New York, 1972). 
11. B. Doucot and X. G. Wen, Phys. Rev. B ,10:2719 (1990). 
12. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, New York, 1966). 


